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ABSTRACT

The reconstruction of continuous-time signals s(t) from the sign of their
(deliberately) contaminated samples is considered. Sequential, generally nor-
linear estimates of s(t) are established and their performance is studied;
error bounds and convergence rates are derived. The signal s(t) need not be
bandiimited. The convergence rates obtained here are faster than those ob-
tained in [4] for nonsequential estimates. The degradation in the reconstruc-
tion of the signal, due to transmission over an arbitrary noisy channel, is

also investigated and bounds on the additional error are obtained.
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[, INTRODUCTION

This paper is concerned with the problem of reconstructing a continuous-

time signal s(t), - » < t < =, from its sign (clipped version) sgn(s(t)],
-w <t <o In general the binary signal sgn{s(t)] does not uniquely de-
termine s(t) even when s(t) is an analytic function. For example, when s(t)

is a bandlimited function and the hard-limiter sgn x is replaced by a strictly

monotonic transformation y(x), then s(t) can be recovered from the bandlimited

version of y[s(t)] by using a recursive algorithm based on the principle of
contraction mapping; this was accomplished by Landau [1] for conventionally
bandlimited functions and by Masry and Cambanis [2] for bandlimited (in the
sense of Zakai) stochastic signals. No such results, however, are available
when y(x) = sgn x whether s(t) is bandlimited or not (see, for example, [3]).
In [4] we proposed a digital scheme, modeiled as a transmitter/receiver
as in Figure 1, whereby the signal s(t) - not necessarily bandlimited - is

sampled periodically at a fixed sampling rate W. The sémples {s(k/w}k are

deliberately contaminated by additive noise {Xk}k having an appropriate dis-
tribution F(x) (in practical applications, {X,}, are computer generated random
numbers drawn from the distribution F(x)). The sign of the contaminated samples
{s(k/W) + X }, is then obtained, i.e., {z, , = sgn(s(k/W) +X 1} . It was then
shown in [4] that estimates §w(t) of s(t), based on the :1 sequence {Zw,k}k'

i exist such that Ew(t) converges (with probability one) to s(t) as the sampling
rate W tends to infinity. Note that in the absence of (X },, s(t) cannot be

| reconstructed from {sgn[s(k/W)]}, as W > =.
This paper continues the investigation begun in [4] and has several objec-
tives: We first note that the estimates considered in [4] were nonsequential,
i,e,, they reconstruct {s(t), t > O} from the entire data set {zﬂ,k}:-O‘ Our
first objective is to establish sequential estimates of s(t) and study their




performance. We seek to obtain tight bounds on the moments of the error

§u(t) - s(t) for a finite sampling rate W, the establishment of mean and prob-
ability one rates of convergence as W + =, and a central limit theorem for the
error §w(t) - s(t). These results for the sequential estimates are sharper
than those obtained in [4]; for examgle, the rate of convergence of the mean-
square error is at most N']/Z for the nonsequential estimates of [4] and is
N'2/3 for the sequential estimates considered here., A second objective of this
paper is the investigation of the effect of channel noise when the binary data
{Zw,k}k is transmitted over a noisy channel (see Fig. 2). This is considered
in Section IIl where bounds on the additional error in the estimation of s(t),
due to channel noise, are derived. Distinc; results are obtained for the white
and colored channel noise cases.

The approach used in [4] and in this paper, to deliberately contaminate the
signal s(t) before quantization, can be viewed in two ways. One is that of
“dithering" - a concept which has been used in the past for correlation func-
tion estimation [S] [6], digital match filtering [7], and other aspects of
digital signal processing as reviewed in [8] (see also the paper by Root [9]
in the context of communication through unspecified additive noise). Alter-

natively, it can be viewed as random quantization for deterministic continuous-

time signals, The idea of random quantization has recently been advocated by
Papantoni-Kazakos [10] for discrete-time stochastic signals and shown to be
essential for stability under perturbations in the statistical description of
the signals, '

The organization of the paper is as follows. In Section Il we consider
the noise-free channel case and derive the convergence properties of the
sequential estimate gw(t). In Section IIl we consider the effect of channel
noise on the performance of the estimate §u(t). Both Sections Il and III con-

tain a discussion on the choice of the parameters of the transmitter/receiver




—a

such that the reconstruction of the signal is achieved with an error not ex-
ceeding a prescribed level. Section IV is a collection of remarks on certain

unresolved questions in this area. The Appendix contains certain auxilliary

propositions needed for the derivations in Section II, as well as a supplement

to Section III.

[I. THE RECONSTRUCTION OF THE SIGNAL (NOISE-FREE CHANNEL)

A. Preliminaries

We consider the noise-free channel case, as depicted in Figure 1, and
specify admissible distributions F(x) of {X,}, linear systems L, and memoryless
nonlinearities g(x), such that gw(t) is a sequential estimate of s(t); the con-
vergence properties of gw(t) are then obtained. Throughout this paper it is
assumed that the signal s(t) belongs to the following class of signals. {

Assumption A. Let b be a fixed known positive constant and let s(t), t > 0,

be any uniformly continuous function satisfying is(t)]i'b for all t > 0.

The constant b is simply a peak constraint on the signal s(t), Aside from
the knowledge of b, the receiver structure and the convergence results of this

paper are nonparametric in the signal. Next it is assumed that the contaminating

random numbers {Xk}:=0 constitute a sequence of independent identically dis-
tributed random variables with a symmetric distribution F(x). The following
argument provides the rationale for the recovery scheme and determines the class
of admissible distributions F(x). Let X be a random variable with a symmetric

distribution function F(x) and define the moment function u(s) by

U(s) = E[sgn(s + X)], -®< § < ®, . '_‘_______‘.‘_' l ‘ r |
.
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u(s) = P(X > -s]-P[X < =s]
a1 - 2F(-s7)

= 2F(g) =1, =@ < § < =,

Thus u(s) is strictly monotonic on an interval (-c,c) if and only if F(x) is
strictly monotonic on (-c,c). Any distribution F(x) which is strictly mono-
tonic on an interval (-c,c) for some ¢ > b is an admissible distribution for

the sequenée {Xk} in the transmitter. Now let
m(t) = E[sgn(s(t) + X)], t >0 (2)

be the mean function of the hard-limiter output,with input s(t) + X, then it

is seen that
m(t) =uls(t)], t>0. (3)

By the strict monotonicity of u(-) over (-c,c), for some c > b, we then

have s(t) = u'](m(t))- Hence, in principle, an estimate s(t) of s(t) can be
obtained from an estimate m(t) of m(t) via s(t) = u'](ﬁ(t)); ﬁ(t) can be ob-
tained from the binary data {Zw,k}k in a linear recursive manner, This ex-
plains the structure of the recovery scheme in Fig. 1. Some refinement of
the above argument is needed, however, since m(t) need not take values in the

interval [u(-b),u(b)] whereas m(t) does. This will become clear below,
Convergence results can be obtained for any admissible distribution F(x)

specified above; however, in order to provide explicit bounds on the mean-square
error of the estimates, we shall concentrate on three typical distributions.

When X is uniform over [-b,b] we have

-1, § < <b
uy(sl = s/b, b<s< b (4)
1, b <s.




When X is normal N(O.oz) we have

uy(s) = 26(s/a)-1, =<5 <o, (s)

where ¢(x) is the standard normal distribution function. When X is Laplacian

(f(x) = (a/2)exp(-alx])) we have
uL(s) = (sgn s) (1-e'“|s|), ~¢ §<oo, (6)

We now specify the memoryless nonlinearity g(x) in the receiver by g(x)
=;f](x) over an interval containing [(-b), u(b)], and by g(x) = 0 elsewhere.
For the three chosen distributions F(x) we have LN(s) and uL(s)’are invertible
over the entire real line while uu(s) is invertible over [-b,b], and we define
g(x) as follows.

Assumption B. We say that (B) is satisfied if any one of (B1), (B2), or
(B3) is satisfied.

(81): X is uniform over (-b,b] and
bx , x| <1,

0 , x| >1.

gy(x)
(82): X is normal N(O,oz) and

‘u,}‘(X) » fxle uyle)

gu(x) = c=b+e, g>0.
N lo

, Otherwise |,
(B3): X is Laplacian and
- é—(sgn (1 -|x|) , x| < 1-¢7%€
gL(x)s |c.b+5| €>0.
0 , oOtherwise
We next specify the linear system L in the receiver whose output mu(t) provides
an estimate of the function m(t) given in (3).

P
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We consider sequential estimates using a sliding window on blocks of a fixed size
N of the data {2, ,}: First m(t) is estimated at the sampling poin;s{k/w}:=0 by
~ k ] N']
UCRE IR SR R S N ™

and then m(t) is estimated either by the step function

n(t) = T me(K) Tk kel (t (8a)
my(t) kfow) %, KLt
or by the piecewise linear function
M) = (k) () +1-(0e-0] my() Ik, k(). (8b)
The estimate QN(t), t > 0, s then given by
su(t) = glmy(t)] (9)

where g(x) is specified by Assumption (B) and ﬁw(t) is given by (8a) or (8b).
Thus ;w(t) is obtained sequentially with delay not exceeding N/W and (N+1)/W
for (8a) and (8b), respectively. The estimate ;w(t) determined by (8b) is con-
tinuous in t whereas the estimate determined by (8a) is a step function in t,
and thus the former may be considered a more suitable estimate for the con-

tinuous signal s{t). Note that when X is uniform over [-b,b], we have
sylt) = bm(t), t >0 (10)

since only the linear portion of gu(x) is used (as by (8a) and (8b), lau(t)l <1).

In this case, therefore, the estimate gw(t) is linear in the data {Z, k}:so'

B. Bounds on Mean-Square Error and Discussion

Our first result provides a bound on the mean-square error of the estimate
;u(t)- It is stated in terms of the modulus of continuity w(s;5) of s(t), which
is defined for each § > 0 by




w(s;8) = sup Is(t) - s(t9],
{t,t*> 0: [t-t'1<s)}

and which tends to zero as &+0 by the uniform continuity of s(t) over [0.,=).

Eventhough we state all results for signals defined, and uniformly continuous,

over the entire half line [0,»), the same results are of course valid for con-

tinuous signals defined over finite intervals [0,T] with the medulus of contin-

uity over [0,») replaced by that over [0,T].

Theorem 2.1. Under Assumptions (A), (B), the estimate gw(t) satisfies

N

Elsy(t) - s(01° < Ky F(si ‘

* by

T N L

uniformly in t > 0. The constants K1 and K2 are determined by (B) as follows:

For (81): K, = 4 , K2=b2
2, 2
For (82): Ky = =S5K,, K, = 2 €€ /9 (146%/¢?)

For (B3): Ky = 4a2 Ky s Ky = a-2e2ac (1+b2/52)

Theorem 2.1 shows, in particular, that the estimate §w(t) converges to s(t)
in the mean-square sense as W, uniformly in t > 0, provided the block size N

is chosen to depend on W, N = NW’ such that

N
Nw*w and W! +0 as W, (1)

Proof. We first note that the function m(t) = u[s(t)] is also uniformly con-

tinuous on [0,») since y(s), given in (4)-(6), is diffe-entiabie over [-b,b] with

N 1/b , under (B1)
Q=max u'(s) ={/2Tm/0 , under (B2) (12)
Is|<b a , under (B3),
7
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i.e.,

wimis) < Q w(s;6). (13)

Next we obtain a bound on the mean-square error of the estimates %w(t), given in

(8a)-(8b). The corresponding bound for gw(t) follows then from Proposition 1 of
the Appendix.

a) For the estimate (8a) and for each fixed t > 0, we have aw(t) = ﬁw(k/w)
where k is such that k/W < t <(k+1)/W. Since

€1z, \J = uls(pl = m()

we have by (7)
~ p NI i+k
(6] =g 3 m(

which is a positive linear operator on the function m(u), u > 0, and by a well-

known result in approximation theory [11, pp. 28-29]

|Bias(m(t)]] = [Elm,(t)] - m(t)]< 2 wimsay (t))

where

{-1 1

i
—

=|—

. N- .
2 (1) (L - 0f - —‘N-;: - (- 912

—at~
o

0
-1

2 _ 2 k i ky2
o -5 (t- gt (t- %)
=o("‘) v (t- @) ;=0” (t- §

-1

e et -

=j—

vl @ie-Hoe-H -5

N

—) =

=0

1
q Hence

x|x

The second term above is < 0 for N > 2 since 0 < t - &<

N-1 2
2 1 i.2 (1) (201 N
k() < § zo W = 6w S W




Prpa

- —

As the bound on aﬁ k(t) does not depend on k, we have for all t > o
|Biasm,(t)]] < 2 w(my 2. (14a)
- I W

Now since {Z,, k} are independent with Var[Zw kJ g_E[Zﬁ k] =1, it follows from
9 9 L ]
(7) that

-1

N N
var [m(t)] = -‘N-Z o 2T, 1] - (15a)
1=

Thus for all t > 0 we have by (14a) and (15a)
Elm, (t) - m(t)]° < 4 w(m; ——) +
and the corresponding bound for gw(t) follows from (13) and Proposition 1 of the

Appendix.

b) For the estimate (8b) and for each fixed t > 0 with k/W < t < (k+1)/W,

(8b) can be written in the form

A k+N :
m(t) = Zk by k() 2y (16)
1= k] ]
where
0-te-01 1=k
hy, (t,i) 1 i=k+1,...,k +N-1 (17)
w k 9 - N bl b} b}
& (Wtk) , A=k +N
Then
) k+N o
E[mw(t)] = Z hN,k(t’1) m(w)
i=k
which is a positive linear operator on the function m(u), u > 0 since hy, k(t,i) >0
k+N !

and zi:k hy ((ts1) = 1. It follows, as in Part (a), that




|Biasmy(t)]| = [Elmy(e)]-m(t)] < 2 wlmiay (t))

where now

o340 £ e 0 e

kK+N-1

- T0-ut-1k- 02 + ] (§ - t)°

igk+l
1 k+N 2
+ N(wr_.k)(_w_ - t)°.

After some algebra we obtain

N-T .
g, %g] - (e 12+ B 02 - (2ne) (ue-i0]
N-T .
. %‘§=] (e + i%ﬁ [1-(We-k)].

Summing up the first term above and noting that the second term is bounded by its

maximum value 1/4w2 (since 0 < (Wt-k) <1) we have

O‘Vzl,k(t) < SN_-].LE.%LL + _1_2_ = —12’[N2 - %N + %]

6W 4w W
< N2
< 5;2 .
Thus for all t > 0
. ~ N
Bias{m,(t)]| < 2 w(m; ). (14b)
| i < V3 W
From (16) we also have
~ k+N 2 k+N 2
Var[mw(t)] = §=k hw,k(t’i) Var[Zw,i] < §=k hw,k(t’i) (18)
10
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and by (17)

2

ha'k(t,i) - ;}2-{[1-(wt-k)] + (N-1) + (Wt-k)21.

Putting x = (Wt-k) we have 0 < x <1 for which %-3 (l-x)2 + x2 <1,

so that
- K+N .
§- e ] k ha ((ta1) < § - (19)
1= ’

It follows that for all t > 0.
var[m,(t)] < & (15b)
so that by (14b) and (15b) we have for all t >0

E[r?uw(t) - m(t)12 <4 wi(m; L) + r]T
V3 W

and the final result for gw(t) follows as in Part (a).[]

We now discuss the implications of Theorem 2.1. The first term in the bound
is due to the bias and the second is due to the variance of the estimates (8).
For a fixed sampling rate W, the block size N must be'sma11 to reduce the bias
but large to reduce the variance. This trade-off is standard in other areas as
well (e.g. the window - bandwidth parameter in spectral and probability density

estimation). One should therefore use an optimal block size N0 ¢ which minimizes

p
the bound on the mean-square error. Indeed, when s(t) is Lip Y, 0 <Y <1, i.e., when

w(s;8) = DséY, we find that N . is given by (the integer part of)

37 K 1. 2
_ 2 NPy T;%—
Nopt = {2 oY W'ty (20)
2yK]DS

for which the mean-square error becomes

B




Els,(t)-s(td" < O + 20) 152 % Wzv(

w-2Y/(1+2Y))'

) T+2Y (21)

a o

For the (nonsequential) estimates considered in [4], the mean-square error was

shown to be 0(w'm1"(Y’]/2)) and, thus, the estimates of the present paper have

B2 oo i el bttt e i e A i S e N

faster rates of convergence for all 0 < y < 1, For instance, when the signal
s{t) has a bounded derivative |s'(t)]| < D, for all t > 0, then Y=1, the optimal

block size No £ = 0(w2/3) and the mean-square error of the present estimates is

p
0(w'2/3) compared to o(w']/z) for the estimates considered in [4], It may be
of interest to compare these rates to those of other comparable schemes which
also convert a continuous-time signal into a binary sequence by periodic sampling

and a direct 2-level quantization. One such popular scheme is the standard

delta modulation [12] which has been analyzed for stochastic signals only; the
most comprehensive analytical study was carried out by Slepian [12] for station-
ary Guassian input signals with rational spectral densities, but unfortunately

no closed form expressions for the mean-square error and its rate of convergence

AT
o A s e

[ as W»o are available. The only case we are aware of, for which such closed form
expressions are available, is that of a Wiener process input [13]. In this case

the rate of convergence of the steady-state mean-square error, when an optimal

o T ——

step size is used, is N'] (13]. For our scheme we have so far improved the
-1/2 2/3

rate from W to W Note that the sample paths of a Wiener process are

almost surely continuous but not differentiable and the comparison to our scheme

with Lip 1 signal s(t) may be somewhat questionable, Still, the rate of con-
vergence w“ of a standard delta modulator with a Wiener process input pro-

vides a performance measure with respect to which the performance of our scheme
can be compared. It remains an open guestion at this point to find the ultimate
convergence rate possible for our scheme; we conjecture it to be N'] (see Section

IV) but, so far, we have not found the recovery scheme (receiver) which achieves

12
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this rate.

The actual sampling rate W, needed to obtain a mean - square error smaller

than a given level 62, can be determined from (21). For example, for signals
s(t) having bounded derivates {s'(t)| < D for all t > O we obtatn from (20)
and (21)

2 (22)

Note that while the required sampling rate W is proportional to the variations
paramenter D of the signal, the block size N to be used in'the receiver does
not depend on the variations of the signal.

When the distribution of the {Xk} in the transmitter is Gaussian or Laplacian, ?
the constants K, and Ko in Theorem 2.1 depend on the parameters (oz,e) under (B2)
and on (a,e) under (B3). These parameters have so far been left arbitrary pos-

itive constants. The question of their optimal values, which minimize the mean-
square error, is now discussed when the signal s(;) islipY, 0 <Y < 1. From

(21) it is seen that the mean-square error is proportional to K] K%Y . Minimizing

K] K%Y with respect to (cz,e) under (B2), and with respect to {(a,c) under (B3),

yields
142v,1/2 i
= ( ) (1+yn)b , € = yab; under (B2)
a 0 0 (23)
o (l%%i) (1+y4)b , € = yyb; under (B3)

where Yo is the positive real root of the cubic equation
3._1
y = 27{y + Y(2v+1)].
For example, for Lip 1 signals s(t) the optimal choice is

c =22.8042b , e =1,28060b ; under (B2)

ol =4.384 b , € =1.2806 b 3 under (83)

13




It is thus seen that under (B2) or (B3), the variance of the {xk} in the trans-

mitter should be chosen to be proportional to bz, and that the constant ¢ in

the nonlinearity g(x) in the receiver should be proportional to b,

C. Probability One Convergence and a Central Limit Theorem

We first obtain bounds on the higher order moments of the error §w(t) e s(t)
which provide faster rates of convergence.

Theorem 2.2. Let Assumptions (A) and (B) be satisfied and let the signal
s(t) be Lip Y, 0 <Y < 1. If the block size N is of the form N = A NZY/(] + 2)

(cf. 20), then for every integer £ > 1, the estimate §w(t) satisfies

Kt Y(]+o(1))

ELS,(t) - s(8)1% < wae

uniformly in t > 0 for some constant K, . -

Proof. The result for §w(t) - s(t) follows by Proposition 1 from the result
for ﬁw(t) - m(t) which we now establish. Writing for bfevity m,m for ﬁw(t). m(t)
we obtain from m-m = Bias[m] + (m-E[M])
~ 222 .Ang‘zz.Azz-j~ ~1yJ
Elm -m1°" = (Bias[m])“* + jgz (j Y(Bias[m]) Elm - E[m])~. (28)
Using the bound on the cumulants of m given in Proposition 2 in the Appendix and
the fact that the moments of m can be expressed as finite linear combinations of

the cumulants of m, we obtain, as in the proof of Theorem 4.2 of [4], that

~ J 1 + o(]
|E[m—m]|_<_HJ';]v—_-[37éT)-, i>2 (25)

uniformly in t > O where Hj is a constant and [j/2] is the integer part of j/2.
Since s(t) is Lip v, so is m(t) (cf. (13)) and by (14a) - (14b) we have

Y
|Bias[m]| < 2 w(m; /3Nw) = 20 (73"—;-) : ~ (26)

14
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Y) .
271+ 2Y) 4n (25) and (26) and substituting in (24) we obtain

Putting N = A W

~ 2L
E(m - m]2£< (L AY)ZL- L + (1 + o(] 2Ly, 2L-j P
< ST (1 +0(1)) jZZ (I g _%_
Wi
(27)
where the constants L = 20, /3'/2, py = Y(2¢ - §) - 3+(4/2] and

L 28+ Y - 2v[i/2)

: = L - 2YLHY
SINCe p =TI+ %ol T Tr o Nt L.

2L
it follows that the terms in the sum Z in (27) with j even are dominant, and
150
thus by (27) ’
E[a ) m]2£ ) KK,Y[1+O(])]
S TR

uniformly in t > 0, where
G, = N2 § (2 2 oy
2.y L tan 2n- 0

The convergence rate 0(N'2Y£/(1+2Y))given in Theorem 2.2 is again faster

than the rate o(w'l min(y,1/2)) obtained earlier for the nonsequential estimates

considered in [4]. Theorem 2.2 implies the convergence with probability one of the

estimate sw(t) to s(t) as W (i.e., corresponding to almost every realization of the
sequence {Xk}‘:=0 in the transmitter). This strong consistency of §w(t) together

with the rate of convergence is given in the following.

Theorem 2.3. Let Assumptions (A) and (B) be satisfied, let the signal s(t) be
Lip v, 0 <y <1, and assume the block size N to be of the form N =A WY/ 20

Then for each fixed t > 0 we have with probability one

15




(No)e sup |5 (t) - s(t)[——e0 as Wy—==

for every constant 9 satisfying 0 < 9 < T¥27 .

Proof. We note that for each fixed t > 0, the estimate ;w(t), regarded as a

random process with parameter W > 0, is separable. The result then follows from
Theorem 2.2 and Kolmogorov's theorem (Neveu(14, p. 97]) in the manner of the proof

of Theorem 4.3 in [4]. []

For example, when s(t) has a bounded derivative then y = 1 and with probability

one we have, in particular,
W [sy(t) = s(t)}—=0 as N —==

for all 0 < 8 < 1/3. for the estimates considered in [4] we obtained 0 < 8 < 1/4
for the same example and, thus, the sequential estimates of the present paper

have a faster rate of almost sure convergence,

We finally derive a central limit theorem for the estimation error §u(t) - s(t)
which is useful in obtaining confidence intervals for this error, Define the

normalized error process

3,(t) = B (t)(s(t) - s(t)], t20
where

8,(t) = u'[s(t)] var™/Z(my(£)]. (28)

In the following we shall assume that under (81), X is uniform over [-c,c] with

¢>b in which case the estimate (10) is replaced by sw(t) =c ;w(t).

Theorem 2.4. Let Assumptions (A) and (B) be satisfied and let the signal s(t)
be Lipy, 0 <y < 1. Assume, in addition, that under (B1), X is uniform over [-c,c]

with ¢>b. If the block size N is chosen to be of the form

16




A 2y
N=AW" 0<X < w7y

then for each fixed t > O, §u(t) is asymptotically standard normal variable as W=
and for distinct t's the values of the process {Ew(t). t > 0} are asymptotically
independent.

The normalizing factor 8,(t) is bounded from above and below, uniformly in
t >0, as follows:

172
For (8a): My N / < Blt) < M, N2 (29)
: 172
For (86): My N2 g(t) ¢ M, e
I72W

where

for (B1): My = 1/c poMy =y 2 . 2 ,

for (82): M, = J2me exp(-b21208) My = (210% #(b/o) [1-0(b/o)]}"/2,

for (83): M, = xexp(-ab) s My = o exp(ab/2) [Z-exp(-ab)J']/z.

Proof. We prove the asymptotic normality and independence of the normalized
error process for m(t):

&w(t) - m(t)
var im0}

hy(t) =

The corresponding results for the signal s(t), as stated in the theorem, will then
follow by using a result of Mann and Wald [15, p.226] in the manner of the proof

of Theorem 3.4 in [4]. Putting
m(t)-E(m (t)]
Ew(t) - il 172 Anu
var''“[m (t)]
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we have

Btas(m(t)]
var [ ()]

my(t) = §,(t) + t > 0.

The proof is accomplished by showing that as Wee the second term tends to zero and
Ew(t) is asymptotically standard normal variable with asymptotically independent
values for distinct t's.

We have V, < Var(Z, .] < 1 where

Vo = min Var[sgn(s+X)]= 1 - max uz(s)

Is|<b Is|<b
= 1-2(b).

Vo, is easily calculated under (82), (B3) and the modified (B1) and in all cases

Vo > 0. Thus by (15a) for the estimate (8a) and (18) and (19) for the estimate
(8b) we have

v A
for (8a): £ < varlm(t)] < (30a)

v .
for (8b): Ng (1- %N) < Var[m(t)] < % . (300)

Hence by (14a) and the lower bound in (30a) we have for the estimate (8a)

gias[m,(t)] Y +1/2
| a:f:" - 1+ 0as W
var [mw(t)]

W

by assumption on N. Similarly for the estimate (8b) (cf. (14b) and (30b)).

[ . We now consider aw(t). Clearly E[Ew(t)] = 0 and Var(EH(t)] = 1 for all
t > 0. Also for r > 3 and all instants t;,...,t > 0 (not necessarily distinct)

! ) we have ) )
E : Cum {m (t,),...,m,(t )}
| Cum (£, (81,05 Ey(t )} = ?yzl mylt,

1n]Var [m,(t)]
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and using Proposition 2 for the numerator and the lower bound in (30a)-(30b)

for the denominator we find
-(-1)
Cumrfaw(tl),....éw(tr)} = (N2 )+ 0 as Wow

since r > 3. Finally, for t) # t, we have E[Ew(t])ﬁw(tz)]+ 0 as W= since for
large enough W (say %ﬂ-< lt] - tzl), Ew(t]) and gw(tz) are independent as aw(t])
and ﬁw(tz) are expressed in terms of nonoverlapping blocks of N Zw’i's. It then
follows by Lemma P4.5 of [16] that the finite dimensional distributions of
(Ew(t), t > O} converge as W»= to the finite dimensional distributions of a Gaus-
sian process with mean zero and covariance R(t1,t2) = ] for t] = t2 and R(t1,t2)=0
for t) # tz; which establishes the desired result for ;w(t).

The bounds (29) for the normalization factor Bw(t) follow from (28), (30) and

the observation that
u'(b) < u'ls{e)] <wu'(0).0
II1. TRANSMISSION OVER A NQISY CHANNEL - ERROR ANALYSIS

In this section we study the degredation in the performance of the receiver
of Section [I when the binary data {Zw k} is transmitted over a noisy channel.
The modification in the transmitter/receiver structure of Figure 1 is shown
in Figure 2. The binary sequence {Zw k} is now pulse modulated
p(t) = T 2o, a(t-% .t o0
E=o W,k Wtz
where a(t) is the transmission filter, i.e., a(t) is a fixed function over [0,1/W],

vanishing outside of [0,1/W], with finite energy
1/W

ey = [ la(t)]%t.
0
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The power of the transmitter is then

1/W 2
g = We, =W j Ja(t)|€ dt. (31)
0
A possible choice for a(t) is, for example, a(t) = C sinmit 1[0 1/N](t) for which

p(t) resembles a PSK waveform and the transmitter power is then ﬁw = CZ/Z_ The
channel noise {n(t), -e<t<=s} is assumed to be a wide-sense stationary process,
independent of the sequence {Xk}, with mean zero and covariance function R(t).

The channel noise need not be Gaussian nor white. The received waveform is then
r(t) = p(t) + n(t), t>0.

The modification in the receiver, as shown in Figure 2, is based on the simple idea

of first estimating Zw K from the received waveform r{(t) over the kEﬂ interval

[% . Eﬁl , and then using the estimates {Zw k) as the input to our previous (noise-

less channel) receiver. This is accomplished by employing a standard matched filter
whose output

k+1)/W K
T ® a(t- W) r(t) dt, k=0,1,..., (32)

k/W
is used to estimate Zw K by
z

Wk W(Tk) » k=20,1,... (33)

where the transformation y¥(x) is specified below. Hence the estimate sw(t) of s(t)

is given by (9)

s,(t) = gm(t)], ¢ >0 (9)
where, as before, g(x) is specified in Assumption B but with ﬁw(t) is now determined
from

~ k1 N

LIS R I A )
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by (8a) or (8b). For convenience of notation we shall write &w(t) in the form
m(t) = ho(tei) Zy « » t 50 (8')
" oo M W1

where the kernel {hw(t,i)} can easily be identified for the sequential estimates

(8a)-(8b). In fact, the analysis in this section is valid for any {hw(t,i)}

corresponding to a positive linear operator with

i. hw(t,i) >0 forall t>0,i>0,

- -]

. ] h(t,i)=1 for all t > 0,

=0 (34)
i1, § 1% h(tidcw forall t 30,

=0
iv. J ha(t,i) < for all t > 0.

i=0
Consider now the guestion of choosing the nonlinearity ¥(x) in (33). It is

natural to base the choice on minimizing the mean-square error E[Zw iy k]2

under the constraint that Zw K takes on the values +1. For example, when the
channel noise is white and Gaussian with R(t) = (v0/2)6(t), the analysis gives

y(x) = sgn x (i.e., 2w K : sgn[Tk]) which corresponds to the classical optimal
detector (nonparametric in the signal s(t))-see Part C of Appendix -. For this

case one finds Etiw,k - Zw’ka = 4[1-¢(dw)] where d,, = Zew/v0 is "the signal

to channel-noise ratio". However, as seen from the Appendix, this optimal de-

tector for the symbol ZW‘k is not necessarily optimal as far as the estimation

of s(t) is concerned. In fact, the linear choice y(x) = x/ew, which gives the

worst possible error E[iw Kk~ ZN k]2 = 1 under the condition dw=1, provides a

smaller degradation in the estimation of s(t) than the "optimal" y(x) = sgn x.

Consequently, we shall assume in this section that

3 K
ik ™ o .0 k=00, . (35)
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which is simply a scaling of the matched filter output.

We have,

Theorem 3.1. Let Assumptions (A) and {B) be satisfied and the estimate ;w(t)
be given by (9) and (8') with iw,i given by (35) and {hw(t,i)} satisfying (34).
Then

a) When the channel noise is white, with R(t) = (vO/Z)G(t), we have for each
fixed t > 0,

E[gw(t) - s(t)]2 5_K1<uQS;aw(t)) + Ky (1 + :%) va(t).

W
b) When the channel noise is colored, with arbitrary continuous correlation

R(t), we have for each fixed t > 0,
s y . R(0)
Elsy(t) - s(t)]z < K N%S;dw(t)) + Kz(vﬁ(t) + Néw ),

where in both parts (a) and (b)

T o(t-5H2 hott.i),
ido (Frw hulet

£ro
P
*
~—
]

n
—
o
~—
1]

T 2
ho(t,i),
iZO W

W = 7RV
and the constants K] and K2 are as in Theorem 2.1.

Corollary 3,1. Assume {hw(t,i)} corresponds to the sliding windows of

Section II (cf. (8a)-(8b)), then
a) When the channel noise is white, the sequential estimates sw(t) satisfy,

uniformly in t > 0,

22




-~ K
N 1
ELsy (t) = s(t)12 < Ky wh(sit— )+ g2 (1 + 35 )
I W dw
b) When the channel noise is colored, the sequential estimates sw(t) satisfy,

uniformly in t > 0,

ELs, (t) - s(8)1% < Ky wi(ss

N 1 . R(0)
)+ Ky + ).
VI W Z'N "‘ew

A comparison of Corollary 3.1 with Theorem 2.1 shows that the channel noise
simply increases the variance of the estimate sw(t) by a factor inversely propor-
tional to the "signal to channel-noise power ratio" (e.g. WeN/R(O) in the colored

noise case).

Proof. By (32) we have
1/W 2 1/W K
Te = 2y x j la(t)|“dt + j a(t) n(t- @) dt
0 0
so that by (35)

7. =1

WK W.k gy, ko= 0,1,... ‘(36)

where (ck} is a wide-sense stationary sequence, independent of {Zw k}’ with mean

zero and covariance sequence o = E[cn+k;;J given by

1/W
;% II a(t)a(t)R(t-1+ %)dt dt, noise is colored

W 0
on = (37)
Yo
Te dn 0 , noise is white
w £

Since the Zw k's are independent with mean m(k/W) and Var[ZN k] < 1, we have

by (36)

E[Ew’kJ = m(k/W)
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and
& it 'pi-jl » noise is colored
lCov{Zw oLy J}I < '
0 , Noise is white.
[T+ e 18y

Hence for the estimate mw(t), given by (8'), we have

E[r:tw(‘t)] = .20 hy(ts1) m(i/W) (39)
1=
and
Var[r?nw(t)] =1_=g §=0 COV{Zw iy J} hg(ts1) My(tsd). (40)

Since m(t), t > 0, is a uniformly continuous function, we have by the result of

[11], on the interpolation of continuous functions by positive linear operators,
and (39) that for each fixed t > 0

|Bias[m,(t)]] < 2 w(msoy(t)) (a1)

where aﬁ(t) is given in the theorem. For the variance expression (40) we consider
the white noise case first. Then by (38)

> -]

varfm ()] < (1+ ) T wd(t,i) = (14 ) vi(t). (42a)
dw 1=0 dy

When the channel noise is colored we have |p. .| < py, and by (37)
i-j! = %0

1/W
< MO 1 Placejaer? < O
ey 0 W
24




where we have used the Cauchy-Schwarz inequality in the last step. Hence

by (38) and (40)

Var{m,(t)] < 1, h2(t.i) + %g%l (L, n(t.1)32

= v2(t) + %éﬁl (42b)

where the last step follows by (34.ii). We thus have by (41) and (42),
2 1 . .
4 (mie, (t)) + (1+ ;z)va(t), noise is white
Elm(t) - m(t)1? < "
2. 2 R(0 C
4w (m,aw(t)) + vw(t) + Wé;l’ noise is colored

and the result for gw(t) follows from (13) and Proposition 1 in the Appendix.d

The implications of Corollary 3.1 are now considered in more details. In
the case of colored noise, the contribution of the channel noise to the mean-
square error of gw(t) is the additive term KZR(O)/weN = KZR(O)/IQ, where Fh is
the power of the transmitter. Thus to combat the channel noise, ﬁd must be pro-
portional to w* for some X > 0. In the case of white noise, the contribution is
the additive term K2/Nd6 = szO(W/N)/ﬂM. If the block size N is chosen to be
0(N2Y/<]+2Y)) for Lip y signals (cf. Nopt 9iven in (20)), then R, must be proportional
to wEZY/(I*ZY)] * A for some X > 0 in order to combat the channel noise. It is
then clear that the transmission power ﬁw must be appreciably higher in the white
noise case than in the colored noise case for the same channel noise contribution
to the mean-square error of §w(t). It is also of practical interest to obtain the
values of the parameters (W,N, P) for the reconstruction of the signal s(t) to
be achieved with mean-square error not exceeding a given level 52. For simplicity

we carry out the analysis for signals s(t) having bounded derivatives Is'(t)|< D

(i.e., s(t) e Lip 1) and a sinusoidal pulse
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C sinmdt, 0<ter

a(t) = (43)
0 , elsewhere

is used as a transmission filter.

a) White Channel Noise. Choose C2 = vow. Then dﬁ = 1 and the channel noise

simply doubles the variance of the estimate gw(t). We have by Corollary 3.1

- \ 2K i
ELs,(t) - s(£)1% < K 02(%‘ )2 + 2.

Minimizing the right hand side with respect to N, we obtain the optimal block size

to be (the integer part of)

_ §3K2 }‘/3 23
Ky0°

Nopt

for which
2 {2
. K.K5 D°\1/3,,,2/3
E[sw(t) - s('c)]2 < J(_]_g_) (%) .

Hence, for the mean-square error to be less than 62, we require the values of

(W,N,C%) to be
3 2 2 3
W > 3VR7 K,(D/s), N = 3K,(1/87) , €% =3 vy vKy K,(D/87). (44)
< 1 ™2 2 0 "™ 72
Under (B1) - the simplest transmitter/receiver structure - these values are

W 662(0/6%) M= 3b2(1760) . =6 vy b2(D/8%). (45)

b) Colored Channel Noise. By Corollaiy 3.1

" 2 2, N 2 1, 2R{0O
E[Sw(t) -s(t)1°< K D (-/%_N-) + KZ(N'*' ; ) .

Minimizing the right hand side relative to N, we find




0
Pt~ 2k, 0%)
and if we demand, as in case (a), that the noise contribution simply doubles the

variance we find

28

¢ 2R(O)N

opt

and for the mean-square error to be less than 62 we need the values of (N,N,Cz) to be

W> TITIZ KT Ky(0/8%) o N= 3 Ky(1/69) . €2 = SR(0) Ky(1/67).

(46)

2 in the white noise

Comparing (44) with (46) we note that the transmitter power C
case is proportional to the variation parameter D of the signal and to (1/63)
whereas in the colored noise case the transmitter power is independent of D and

proportional to ]/62 only.

IV, COMMENTS

We point out some open probiems connected with the reconstruction scheme
considered in this paper.

We first note that the results of this paper generalize and sharpen those
2/3

of [4]. 1In particular, the mean-square convergence rate obtained here is W~

-1/2

compared to W for the nonsequential estimates of [4]. An open problem is

therefore to find the ultimate mean-square convergence rate of any recovery

scheme (sequential or not) based on the binary data {Zw k}k' We believe this

rate to be w“ for nonconstant signals s(t) (when s(t) is constant for all t,

the problem is trivial). One reason for this belief is the nature of the trade-

off between bias and variance in Theorem 2.1 (as a function of the block size :
N) which is reminiscent of a similar trade-off in spectral and probability den-

sity estimation (as a function of the window-bandwidth parameter). This problem is
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currently under investigation.

A second open problem is to extend the results of this paper to the case
where the signal s(t) is not necessarily uniformly bounded. It is clear that
in such a case the contaminating sequence {Xk} should have a strictly mono-
tonic distribution F(x) over (-»,») {e.g., Gaussian). Thenu(s) is strictly mono-
tonic on (-=»,®), s(t) = u'][m(t)], and we set s(t) = u'][ﬁ(t)]. Now it is
possible to show that m(t) converges to m(t) with probability one and thus,
also, s(t) to s(t) since u'](x) is a continuous function. The main problem
in this case is to obtain bounds on the mean-square error for §(t); the difficutty
being that such bounds cannot be obtained from those for ﬁ(t), as in the proof
of Theorem 2.1, since u'](x) is not Lip 1 on [-1,1].

The question of extending the results of this paper to stochastic signals

is currently under investigation.

APPENDIX

Collected here are two propositions needed in the proofs of the theorems in
Section Il as well as a supplement to the white channel noise case of Section III.
The first proposition provides the link between the properties of sw(t) and

my(t).
A. Proposition 1. Under Assumptions (A) and (B) we have: Under (B1)

sy(t) - s(t) = blm(t) - m(t)]
and under (B2) or (B3) we have for each integer p > 1.

Elsy(t) - s(t){P< A Efmy(t) - m(t)|®
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where

2.2
for (82): A = (m/2)P/2 oP &PS /297 [y 4 (b7e)P]

for (B3): A = a P P [1 + (b/e)Py.

Proof. See Proposition 5.1 in [4].0J

The second proposition provides upper bounds on the cumulants of the estimate
mw(t).

B. Proposition 2. For every integer r > 2 and every choice of instants

tl""’tr‘l 0, the joint cumulant of order r of the estimates ;w(t) (cf. (8a)-(8b))

satisfies

. R T
[Cumr{mw(t]),---, mw(t?')}l i N_::-1-

uniformly in {tj} for some finite constant Fr'

k. - k,+1
Proof. Assume without Toss of generality that t; e [T% , —lw-), j=l,...,r,

where the integers k],...,kr are not necessarily distinét. Then we can write
k. +N
my(ts) = ) hw,kj(tj’i) Zy,i

i=k,

where for the estimate (8a)

1,1 =0,1,...,N1
)N

0 , otherwise

and for the estimate (8b) they are given by (17). By Proposition 4.2 of [4] we

have
~ A r ( ) (2)
Cum_{m (t,),...,m(t )} <T T h t,,i A
| Cum,.{m, (£, "‘url_riéxjﬂw,kjj
where
r . =
I = njal xj ; IJ {kJ,...,kJ+N}.
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For the estimate (8a) we have by (Al)

.
. 1
1 m h (t,,i) = J —
jel g1 Wkt ier' N

where [' = ﬂ;=‘ {kj,....kj + N-1} and the inequality follows from the cardinality

of I' being at most N. for the estimate (8b) we have from (A2) and the rEh dimen-

sional version of Holders inequality

A ~ r o 1/r
|Cum, {m.(ty),. .. m (t )} < T, g=]{ ;el [hw’kj(tj,1)] b (R3)
Now by (17)
h, o (t,1)]7 < LD

121 LTALREN ié[j (i, (501
- . . r . B r
= 7 {n (th kj)] +(N-1) + (wtj kj) }
< 1
- EF?T (A4)

where the last step folows from (1-x)" + x" <1 for 0 < x < 1. The result now
follows by substituting (A4) in (A3) [

.C. Supplement to Section III. Assume the channel noise {n(t),-o<t<w} to be white

and Gaussian with R(t) = (vo/Z) §(t). Let

Zw’k = Sgn (Tk - e) » kgo,],..-

for some threshold & which minimizes E[fN k- Ly k]2. It is not difficult to see
L] bl

that

3 2
E[zH’k - Zu’k] = 4Pe
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where Pe is the probability of error per symbol given by

PeaQ(e-eW)[]'*g(k/w)]+[]_Q(e+eW)][l-mkH].

the value of & which minimizes Pe is

. 1 - m(k/W
8 ?3; S pE Ty

which is dependent on m(k/W) = uls(k/W)]. Since s(t) is unknown, a nonparametric

choice of 8 is 8 = 0 for which

iw,k = sgn(T,] (AS)
and

Ty - ygd? = 40 - 04 (A6)
where

dy = JZE;736 . (A7)

We then have

Proposition C. Under the assumptions of Theorem 3.1, but with iw ¢ 9iven by (A5),

we have when the channel noise is white and Gaussian
ELSy(t) - s(t)1% < Kilwlsiog(t)) + S01-0(d)1}% + K, vi(t)
W < Miwtssoy 6[ W 2 W

where QS(t),\rﬁ(t),and the constants K, and K, are as in Theorem 3.1 and the constant
Q is given by (12).

Corollary C. Under the assumptions of Corollary 3.1, we have, uniformly in t > 0,

- 2 N 1 2. %
E - K { H )4- 1-0(d + ==
s, (t) - s(t)]” < K lw(s Y glt-eld )" + §




o i eaa o R wdﬂ".’!ﬂﬂﬂ'ﬂﬂ!ﬂﬂﬂ!"!!

Proof. The derivations proceed in the manner of the proof of Theorem 3.1 noting

that for iw K given by (AS), we now have
E[zw,i] = [2¢(dw) - 1] m(i/w)

~ ~ ~ 2
ICov{Zw’i,Zw,j}I < E[Zw’i] 8; ;=8

W 1,d T
Then
|Biasim,(t)]] < 2[20(d,) - 1] w(may(t)) + 2[1 - o(d,)1|m(t)]
< 2w(mieg,(t)) + [1 - ¢(d )]}
and
! var(m I S
| ar(m ()] < ] 6 h(ts1) = vy(t)
1=

and the result follows.Od
Note that the channel noise here increases the bias of the estimate sw(t) in

contrast to Theorem 3.1 (a). Corollary C implies that the additional term, due to

the channel noise, becomes negligible only when the "signal to channel-noise ratio"

! dw tends to infinity as Ws«. In sharp contrast, Corollary 3.1 (a) implies that the
additional term Kzldﬁ N, due to the channel noise, becomes negligible as W-= (and thus
M=) even if d, = 1, say. Thus, with 4=t the noise contribution when iﬁ.k is
nonoptimal (35) will be smaller, for large W, than when Ew,k is optimal (A5). This

—-——

conclusion holds eventhough with dw = 1 we find for the nonoptimal estimate (35)
that (cf. (36), (37))

A 2 -
E[Zw,k - ZN’k] = ].
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